
http://bit.ly/2Kg7nmX

1

Is It a Cat or a Dog? A Neural Network
Application in OpenCV

Who is the good boy?

From time to time, a website named Kaggle hosts several competitions in the fields of

Data Science and Computer Vision. One of those competitions was the Dogs vs.

Cats challenge, where the objective was “to create an algorithm to distinguish dogs from

cats”. Although this particular challenge already has been finished, I thought that it’d

give me a pretty good material to a tutorial. Let’s learn how to solve this problem

together using OpenCV!

Here’s a live demo:

SETUP ENVIRONMENT

I’ll assume that you already have OpenCV 3.0 configured in your machine (if you don’t,

you can do it here). Also, I’ll use the Boost library to read files in a directory (you can

perhaps skip it and replace my code by dirent.h. It should work in the same way). You

can download Boost here. Those are the only two external libraries that I’m going to use

in this tutorial.

Ok, ok, let’s start by downloading the training and test sets. Click here and download

the test1.zip (271.15mb). You may need to register first. After downloading, extract

them to a folder of your preference. The training set will be used to adjust the

parameters of our neural network (we will talk in details later), while the test set will be

http://www.kaggle.com/
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
http://docs.opencv.org/2.4/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html#table-of-content-introduction
http://www.boost.org/
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/download/test1.zip

http://bit.ly/2Kg7nmX

2

used to check the performance of our neural network (how good it is at generalizing

unseen examples). Unhappily, the provided test set by Kaggle is not labeled, so we will

split the training set (in the provided link) and use a part of it as our test set.

READING TRAINING SAMPLES

Let’s start coding! First, let’s start by reading the list of files within the training set

directory:

#include <vector>
#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include <fstream>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/ml/ml.hpp>

#include <boost/filesystem.hpp>

namespace fs = boost::filesystem;

/**
* Get all files in directory (not recursive)
* @param directory Directory where the files are contained
* @return A list containing the file name of all files inside given directory
**/
std::vector<std::string> getFilesInDirectory(const std::string& directory)
{
 std::vector<std::string> files;
 fs::path root(directory);
 fs::directory_iterator it_end;
 for (fs::directory_iterator it(root); it != it_end; ++it)
 {
 if (fs::is_regular_file(it->path()))
 {
 files.push_back(it->path().string());
 }
 }
 return files;
}

int main(int argc, char** argv)
{
 if (argc != 4)
 {

std::cerr << "Usage: <IMAGES_DIRECTORY> <NETWORK_INPUT_LAYER_SIZE>
<TRAIN_SPLIT_RATIO>" << std::endl;

http://bit.ly/2Kg7nmX

3

 exit(-1);
 }
 std::string imagesDir = argv[1];
 int networkInputSize = atoi(argv[2]);
 float trainSplitSize = atof(argv[3]);

 std::cout << "Reading training set..." << std::endl;
 double start = (double)cv::getTickCount();
 std::vector<std::string> files = getFilesInDirectory(imagesDir);
 std::random_shuffle(files.begin(), files.end());

}

The function getFilesInDirectory expects as input a directory and returns a list of

filenames within this directory. In our main, we expect to receive three parameters from

command line: The directory where our training set is stored, the size of our network

input layer and the ratio of our training set (i.e., 0.75 indicates that 75% of the images

within the training set will be used to train our neural network while the remaining 25%

will be used to test it). We then shuffle the list of filenames (in order to prevent bias).

Pretty straight-forward until here, aye? :)

Now we are going to iterate over each filename inside files and read the image

associated to it. Since we will do it twice (one during the training step and another

during the test step), let’s create a function apart in order to modularize our code.

typedef std::vector<std::string>::const_iterator vec_iter;

/**
* Read images from a list of file names and returns, for each read image,
* its class name and its local descriptors
*/
void readImages(vec_iter begin, vec_iter end, std::function<void(const std::string&,
const cv::Mat&)> callback)
{
 for (auto it = begin; it != end; ++it)
 {
 std::string filename = *it;
 std::cout << "Reading image " << filename << "..." << std::endl;
 cv::Mat img = cv::imread(filename, 0);
 if (img.empty())
 {
 std::cerr << "WARNING: Could not read image." << std::endl;
 continue;
 }
 std::string classname = getClassName(filename);
 cv::Mat descriptors = getDescriptors(img);
 callback(classname, descriptors);
 }
}

http://bit.ly/2Kg7nmX

4

There it is. The readImages function expect to receive as input two vector iterators (one

for the start of our vector and another for the end, indicating the range from which we

will iterate over). Finally, it expects another third parameter, a lambda function called

“callback” (lambda functions are only available on C++11, so enable it on compiler by

adding the -std=c++11 flag or -std=c++0x on old compilers). Now let’s look more

carefuly on what’s happening inside this function.

We use a for to iterate over each filename between the limiters begin and end. For

each filename, we read its associated image through the OpenCV imread function. The

second parameter passed to imread indicates the color space (0 = gray scale. We don’t

need the color information in this example. You’ll find the explanation later). After

calling imread, we check if we could really read the image (through the empty method). If

don’t, we skip to the next filename. Otherwise, we get the class name and the

descriptors associated to the read image and return them to the “callback” function.

Now let’s implement the getClassName and getDescriptors functions.

If you look at the files inside the training set you extracted, you will find out that they are

named as “dog.XXXXX.jpg” or “cat.XXXXX.jpg”. The first three letters is always the

class name, where the remaining is only an identifier. So let’s get those three first

letters!

/**
* Extract the class name from a file name
*/
inline std::string getClassName(const std::string& filename)
{
 return filename.substr(filename.find_last_of('/') + 1, 3);
}

Now what should the getDescriptors function looks like? Let’s figure out on the next

topic.

http://bit.ly/2Kg7nmX

5

EXTRACTING FEATURES

There are several approaches here. We could use the color histogram, or perhaps

the histogram of oriented gradients, etc., … However, I’m going through a different

approach. I’m going to use the KAZE algorithm to extract local features from the image.

Since we can’t submit local features to a neural network (because the number of

descriptors varies), I’m also going to use the Bag of words strategy in order to address

this problem, turning all set of descriptors into a single histogram of visual words, and

THAT will be used as input to our neural network. Got it? Excellent! So let’s implement

the getDescriptors to extract the KAZE features from an image, and later, after all KAZE

features had been extracted, we’ll apply the Bag of Words technique.

/**
* Extract local features for an image
*/
cv::Mat getDescriptors(const cv::Mat& img)
{
 cv::Ptr<cv::KAZE> kaze = cv::KAZE::create();
 std::vector<cv::KeyPoint> keypoints;
 cv::Mat descriptors;
 kaze->detectAndCompute(img, cv::noArray(), keypoints, descriptors);
 return descriptors;
}

Ok, now let’s go back to our main:

struct ImageData
{
 std::string classname;
 cv::Mat bowFeatures;
};

int main(int argc, char** argv)
{
 if (argc != 4)
 {
 std::cerr << "Usage: <IMAGES_DIRECTORY> <NETWORK_INPUT_LAYER_SIZE>
<TRAIN_SPLIT_RATIO>" << std::endl;
 exit(-1);
 }
 std::string imagesDir = argv[1];
 int networkInputSize = atoi(argv[2]);
 float trainSplitRatio = atof(argv[3]);

https://en.wikipedia.org/wiki/Color_histogram
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
http://isit.u-clermont1.fr/~ab/Publications/Alcantarilla_Bartoli_Davison_ECCV12.pdf
https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision

http://bit.ly/2Kg7nmX

6

 std::cout << "Reading training set..." << std::endl;
 double start = (double)cv::getTickCount();
 std::vector<std::string> files = getFilesInDirectory(imagesDir);
 std::random_shuffle(files.begin(), files.end());

 cv::Mat descriptorsSet;
 std::vector<ImageData*> descriptorsMetadata;
 std::set<std::string> classes;
 readImages(files.begin(), files.begin() + (size_t)(files.size() *
trainSplitRatio),
 [&](const std::string& classname, const cv::Mat& descriptors) {
 // Append to the set of classes
 classes.insert(classname);
 // Append to the list of descriptors
 descriptorsSet.push_back(descriptors);
 // Append metadata to each extracted feature
 ImageData* data = new ImageData;
 data->classname = classname;
 data->bowFeatures = cv::Mat::zeros(cv::Size(networkInputSize, 1), CV_32F);
 for (int j = 0; j < descriptors.rows; j++)
 {
 descriptorsMetadata.push_back(data);
 }
 });
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) /
cv::getTickFrequency() / 60.0 << std::endl;
}

I created a struct named ImageData, with two fields: classname and bowFeatures. Before

calling the readImages function, I instanciated three variables: descriptorsSet (the set

of descriptors of all read images), descriptorsMetadata (a vector of the struct we

previously created. It’s being filled in such way that it has the same number of elements

as the number of rows of descriptorsSet. That way, the i-th row of descriptorsSet can

also be used to access its metadata (the class name, for instance)). And, for last,

the classes variables (a set containing all found classes).

http://bit.ly/2Kg7nmX

7

TRAINING THE BAG OF WORDS

Now that we have the whole set of descriptors stored in the descriptorsSet variable,

we can apply the Bag of words strategy. The Bag of Words algorithm is really simple:

First we use a clustering algorithm (such as k-means) to obtain k centroids. Each

centroid representates a visual word (the set of visual words is often

called vocabulary). For each image, we create a histogram of size M, where M is the

number of visual words. Now, for each extracted descriptor from the image, we

measure its distance to all visual words, obtaining the index of the nearest one. We use

that index to increment the position of histogram corresponding to that index, obtaining,

that way, a histogram of visual words, that can later be submitted to our neural

network.

Source: http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html

https://en.wikipedia.org/wiki/K-means_clustering
http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html

http://bit.ly/2Kg7nmX

8

int main()
{
 ...

 std::cout << "Creating vocabulary..." << std::endl;
 start = (double)cv::getTickCount();
 cv::Mat labels;
 cv::Mat vocabulary;
 // Use k-means to find k centroids (the words of our vocabulary)
 cv::kmeans(descriptorsSet, networkInputSize, labels,
cv::TermCriteria(cv::TermCriteria::EPS +
 cv::TermCriteria::MAX_ITER, 10, 0.01), 1, cv::KMEANS_PP_CENTERS,
vocabulary);
 // No need to keep it on memory anymore
 descriptorsSet.release();
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) /
cv::getTickFrequency() / 60.0 << std::endl;

 // Convert a set of local features for each image in a single descriptors
 // using the bag of words technique
 std::cout << "Getting histograms of visual words..." << std::endl;
 int* ptrLabels = (int*)(labels.data);
 int size = labels.rows * labels.cols;
 for (int i = 0; i < size; i++)
 {
 int label = *ptrLabels++;
 ImageData* data = descriptorsMetadata[i];
 data->bowFeatures.at<float>(label)++;
 }
}

We use OpenCV k-means function to obtain k centroids (where k is the size of our

network input layer, since the size of our histogram must be compatible with it), stored

in the vocabulary variable. We also pass an additional parameter, labels, indicating the

index of the nearest cluster for each descriptor, so we don’t need to computer it twice.

Now, iterating over each element of labels, we fill our histograms, the bowFeatures field

of our ImageData struct. The strategy of filling the descriptorsMetadata to make its

number of elements as the number of rows of descriptorsSet seemed to be very

convenient here, as we can directly access the histogram associated to each descriptor.

http://bit.ly/2Kg7nmX

9

TRAINING THE NEURAL NETWORK

Now that we have the histogram of visual words for each image, we can finally supply

them to our neural network. But, before that, we need to tell to our neural network the

expected output for each image. The reason for that is simple: A neural network, or

more precisely, the variation of neural network that we are interested in using,

called Multilayer perceptron, is a supervised learning algorithm. A supervised

learning algorithm is one that tries to estimate a function H(x) (called hypothesis

function) that correctly maps inputs to outputs (for instance, we are considering as

input the images and as output the class associated to each image - cat or dog).

So we need to supply the class name associated to each image (or, more precisely, to

each histogram of visual words) in order to enable it to “learn” the pattern. However, a

neural network doesn’t understand categorical data. It works by showing numbers in the

input layer and numbers in the output layer, and then it will try to adjust its weights in

order that a function (called activation function) applied to the input numbers results in

the output numbers. This process is shown in the image below.

Since the activation function generally outputs values between 0 and 1, it’s usual to

encode the classes as a sequence of zeros where only one bit is set to one. This bit is

different for each class. For example, consider the example of number of classes = 4.

We would then have four codifications:

Class A = 1000

Class B = 0100

Class C = 0010

Class D = 0001

https://en.wikipedia.org/wiki/Multilayer_perceptron

http://bit.ly/2Kg7nmX

10

As we only have two classes, our codification will be:

Cat = 10

Dog = 01

int main()
{
 ...
 // Filling matrixes to be used by the neural network
 std::cout << "Preparing neural network..." << std::endl;
 cv::Mat trainSamples;
 cv::Mat trainResponses;
 std::set<ImageData*> uniqueMetadata(descriptorsMetadata.begin(),
descriptorsMetadata.end());
 for (auto it = uniqueMetadata.begin(); it != uniqueMetadata.end();)
 {
 ImageData* data = *it;
 cv::Mat normalizedHist;
 cv::normalize(data->bowFeatures, normalizedHist, 0, data->bowFeatures.rows,
cv::NORM_MINMAX, -1, cv::Mat());
 trainSamples.push_back(normalizedHist);
 trainResponses.push_back(getClassCode(classes, data->classname));
 delete *it; // clear memory
 it++;
 }
 descriptorsMetadata.clear();
}

Notice the use of the getClassCode. It’s a function that turns a class name into its binary

codification. Also, pay attention to the cv::normalize function. We normalize the

histogram of visual words in order to remove the bias of number of descriptors.\

/**
* Transform a class name into an id
*/
int getClassId(const std::set<std::string>& classes, const std::string& classname)
{
 int index = 0;
 for (auto it = classes.begin(); it != classes.end(); ++it)
 {
 if (*it == classname) break;
 ++index;
 }
 return index;
}

/**
* Get a binary code associated to a class
*/

http://bit.ly/2Kg7nmX

11

cv::Mat getClassCode(const std::set<std::string>& classes, const std::string& classname)
{
 cv::Mat code = cv::Mat::zeros(cv::Size((int)classes.size(), 1), CV_32F);
 int index = getClassId(classes, classname);
 code.at<float>(index) = 1;
 return code;
}

And now we have the inputs and outputs for our neural network! We are finally able to

train it!

/**
* Get a trained neural network according to some inputs and outputs
*/
cv::Ptr<cv::ml::ANN_MLP> getTrainedNeuralNetwork(const cv::Mat& trainSamples, const
cv::Mat& trainResponses)
{
 int networkInputSize = trainSamples.cols;
 int networkOutputSize = trainResponses.cols;
 cv::Ptr<cv::ml::ANN_MLP> mlp = cv::ml::ANN_MLP::create();
 std::vector<int> layerSizes = { networkInputSize, networkInputSize / 2,
 networkOutputSize };
 mlp->setLayerSizes(layerSizes);
 mlp->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM);
 mlp->train(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
 return mlp;
}

int main()
{
 ...
 // Training neural network
 std::cout << "Training neural network..." << std::endl;
 start = cv::getTickCount();
 cv::Ptr<cv::ml::ANN_MLP> mlp = getTrainedNeuralNetwork(networkInputSize,
 trainSamples, trainResponses);
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) /
cv::getTickFrequency() / 60.0 << std::endl;

 // We can clear memory now
 trainSamples.release();
 trainResponses.release();
}

The getTrainedNeuralNetwork function expects to receive as input the size of training

samples and training outputs. Inside the function, I first set two

variables: networkInputSize, that is the number of columns (features) of our training

samples and networkOutputSize, that is the number of columns of our training outputs. I

http://bit.ly/2Kg7nmX

12

then set layerSizes, that defines the number of layers and number of nodes for each

layer of our network. For instance, I’m creating a network that only have one

hidden layer (with size networkInputSize / 2), since I think it’ll be enough for

our task. If you want improved accuracy, we can increase it, at cost of

performance.

EVALUATING OUR NETWORK

And now the training step is DONE! Let’s use our trained neural network to evaluate our

test samples and measure how good it is. First, let’s train a FLANN model from the

vocabulary, so we can calculate the histogram of visual words for each test sample

much faster:

int main()
{
 ...

 // Train FLANN
 std::cout << "Training FLANN..." << std::endl;
 start = cv::getTickCount();
 cv::FlannBasedMatcher flann;
 flann.add(vocabulary);
 flann.train();
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) /
 cv::getTickFrequency() / 60.0 << std::endl;
}

Now let’s read the test samples:

int main()
{
 ...
 // Reading test set
 std::cout << "Reading test set..." << std::endl;
 start = cv::getTickCount();
 cv::Mat testSamples;
 std::vector<int> testOutputExpected;
 readImages(files.begin() + (size_t)(files.size() * trainSplitRatio), files.end(),
 [&](const std::string& classname, const cv::Mat& descriptors) {
 // Get histogram of visual words using bag of words technique
 cv::Mat bowFeatures = getBOWFeatures(flann, descriptors, networkInputSize);

http://bit.ly/2Kg7nmX

13

 cv::normalize(bowFeatures, bowFeatures, 0, bowFeatures.rows,
cv::NORM_MINMAX, -1, cv::Mat());
 testSamples.push_back(bowFeatures);
 testOutputExpected.push_back(getClassId(classes, classname));
 });
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) /
cv::getTickFrequency() / 60.0 << std::endl;
}

We instanciated two variables: testSamples (set of histogram of visual words for each

test samples) and testOutputExpected (the output expected for each test sample. We

are using a number that correspond to the id of the class, obtained through

the getClassId previously defined). We then get the Bag of Words features through

the getBOWFeatures function and normalize it. What we still didn’t define is

the getBOWFeatures function, that turns a set of local KAZE features into a histogram of

visual words. Let’s do it

* Turn local features into a single bag of words histogram of
* of visual words (a.k.a., bag of words features)
*/
cv::Mat getBOWFeatures(cv::FlannBasedMatcher& flann, const cv::Mat& descriptors,
 int vocabularySize)
{
 cv::Mat outputArray = cv::Mat::zeros(cv::Size(vocabularySize, 1), CV_32F);
 std::vector<cv::DMatch> matches;
 flann.match(descriptors, matches);
 for (size_t j = 0; j < matches.size(); j++)
 {
 int visualWord = matches[j].trainIdx;
 outputArray.at<float>(visualWord)++;
 }
 return outputArray;
}

It uses the FLANN match method to calculate the nearest visual word for each

descriptor. It then fill a histogram with the number of occurrences for each visual word.

Pretty simple, right?

Now that we have the inputs and outputs for the test samples, let’s calculate

a confusion matrix.

/**

https://en.wikipedia.org/wiki/Confusion_matrix

http://bit.ly/2Kg7nmX

14

* Receives a column matrix contained the probabilities associated to
* each class and returns the id of column which contains the highest
* probability
*/
int getPredictedClass(const cv::Mat& predictions)
{
 float maxPrediction = predictions.at<float>(0);
 float maxPredictionIndex = 0;
 const float* ptrPredictions = predictions.ptr<float>(0);
 for (int i = 0; i < predictions.cols; i++)
 {
 float prediction = *ptrPredictions++;
 if (prediction > maxPrediction)
 {
 maxPrediction = prediction;
 maxPredictionIndex = i;
 }
 }
 return maxPredictionIndex;
}

/**
* Get a confusion matrix from a set of test samples and their expected
* outputs
*/
std::vector<std::vector<int> > getConfusionMatrix(cv::Ptr<cv::ml::ANN_MLP> mlp,
 const cv::Mat& testSamples, const std::vector<int>& testOutputExpected)
{
 cv::Mat testOutput;
 mlp->predict(testSamples, testOutput);
 std::vector<std::vector<int> > confusionMatrix(2, std::vector<int>(2));
 for (int i = 0; i < testOutput.rows; i++)
 {
 int predictedClass = getPredictedClass(testOutput.row(i));
 int expectedClass = testOutputExpected.at(i);
 confusionMatrix[expectedClass][predictedClass]++;
 }
 return confusionMatrix;
}

/**
* Print a confusion matrix on screen
*/
void printConfusionMatrix(const std::vector<std::vector<int> >& confusionMatrix,
 const std::set<std::string>& classes)
{
 for (auto it = classes.begin(); it != classes.end(); ++it)
 {
 std::cout << *it << " ";
 }
 std::cout << std::endl;
 for (size_t i = 0; i < confusionMatrix.size(); i++)
 {
 for (size_t j = 0; j < confusionMatrix[i].size(); j++)
 {
 std::cout << confusionMatrix[i][j] << " ";
 }

http://bit.ly/2Kg7nmX

15

 std::cout << std::endl;
 }
}

/**
* Get the accuracy for a model (i.e., percentage of correctly predicted
* test samples)
*/
float getAccuracy(const std::vector<std::vector<int> >& confusionMatrix)
{
 int hits = 0;
 int total = 0;
 for (size_t i = 0; i < confusionMatrix.size(); i++)
 {
 for (size_t j = 0; j < confusionMatrix.at(i).size(); j++)
 {
 if (i == j) hits += confusionMatrix.at(i).at(j);
 total += confusionMatrix.at(i).at(j);
 }
 }
 return hits / (float)total;
}

int main()
{
 ...
 // Get confusion matrix of the test set
 std::vector<std::vector<int> > confusionMatrix = getConfusionMatrix(mlp,
 testSamples, testOutputExpected);

 // Get accuracy of our model
 std::cout << "Confusion matrix: " << std::endl;
 printConfusionMatrix(confusionMatrix, classes);
 std::cout << "Accuracy: " << getAccuracy(confusionMatrix) << std::endl;
}

OK, a lot happened here. Let’s check it step by step. First, in the getConfusionMatrix, I

use the MLP predictmethod to predict the class for each test sample. It returns a matrix

with the same number of columns as our number of classes, where on each column lies

a “probability” of the sample belong to class corresponding to that column. We use than

a function called getPredictedClass, which is called over each row of the output

of predict method and return the column index with highest “probability”. Now that we

have the predicted and expected classes, we can construct our confusion matrix by

simplying incrementing the index composed by the tuple (expected, predicted).

In possess of the confusion matrix, we can easily calculate the accuracy, that is the

ratio of correctly predicted samples, by simplying summing the diagonal of our

confusion matrix (number of correct predictions) and diving by the sum of our cells of

our confusion matrix (number of test samples).

http://bit.ly/2Kg7nmX

16

SAVING MODELS

Finally, let’s save our models, so we can use it later on a production environment:

/**
* Save our obtained models (neural network, bag of words vocabulary
* and class names) to use it later
*/
void saveModels(cv::Ptr<cv::ml::ANN_MLP> mlp, const cv::Mat& vocabulary,
 const std::set<std::string>& classes)
{
 mlp->save("mlp.yaml");
 cv::FileStorage fs("vocabulary.yaml", cv::FileStorage::WRITE);
 fs << "vocabulary" << vocabulary;
 fs.release();
 std::ofstream classesOutput("classes.txt");
 for (auto it = classes.begin(); it != classes.end(); ++it)
 {
 classesOutput << getClassId(classes, *it) << "\t" << *it << std::endl;
 }
 classesOutput.close();
}

int main()
{
 ...

 // Save models
 std::cout << "Saving models..." << std::endl;
 saveModels(mlp, vocabulary, classes);

 return 0;
}

http://bit.ly/2Kg7nmX

17

The MLP object that its own saving function called save (it also has a load method that

can later be used to load a trained neural network from a file). We save the vocabulary

(since we need it in order to convert the local features into a histogram of visual words)

into a file named “vocabulary.yaml”. And, finally, we also save the class names

associated to each id (so we can map the output of neural network to a name). That’s it!

The full code can be found below.

Compile it by calling:

1

g++ opencv_ann.cpp -std=c++0x -I/usr/local/include/opencv -I/usr/local/include/boost -

I/usr/local/include -L/usr/local/lib -lopencv_shape -lopencv_stitching -lopencv_objdetect -

lopencv_superres -lopencv_videostab -lopencv_calib3d -lopencv_features2d -

lopencv_highgui -lopencv_videoio -lopencv_imgcodecs -lopencv_video -lopencv_photo -

lopencv_ml -lopencv_imgproc -lopencv_flann -lopencv_core -lopencv_hal -

lboost_filesystem -lboost_system -o mlp

For instance, here’s the result I got from the Kaggle’s training set (using

networkInputSize = 512, trainSplitRatio = 0.7)

Confusion matrix:

cat dog

2669 1097

1053 2681

Accuracy: 0.713333

Not bad! Not bad at all, considering the difficulty of some images! ;)

Source: https://picoledelimao.github.io/blog/2016/01/31/is-it-a-cat-or-dog-a-neural-

network-application-in-opencv/

https://picoledelimao.github.io/blog/2016/01/31/is-it-a-cat-or-dog-a-neural-network-application-in-opencv/
https://picoledelimao.github.io/blog/2016/01/31/is-it-a-cat-or-dog-a-neural-network-application-in-opencv/

