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Is It a Cat or a Dog? A Neural Network 
Application in OpenCV 

 
Who is the good boy? 

From time to time, a website named Kaggle hosts several competitions in the fields of 

Data Science and Computer Vision. One of those competitions was the Dogs vs. 

Cats challenge, where the objective was “to create an algorithm to distinguish dogs from 

cats”. Although this particular challenge already has been finished, I thought that it’d 

give me a pretty good material to a tutorial. Let’s learn how to solve this problem 

together using OpenCV! 

Here’s a live demo: 

SETUP ENVIRONMENT 

I’ll assume that you already have OpenCV 3.0 configured in your machine (if you don’t, 

you can do it here). Also, I’ll use the Boost library to read files in a directory (you can 

perhaps skip it and replace my code by dirent.h. It should work in the same way). You 

can download Boost here. Those are the only two external libraries that I’m going to use 

in this tutorial. 

Ok, ok, let’s start by downloading the training and test sets. Click here and download 

the test1.zip (271.15mb). You may need to register first. After downloading, extract 

them to a folder of your preference. The training set will be used to adjust the 

parameters of our neural network (we will talk in details later), while the test set will be 

http://www.kaggle.com/
https://www.kaggle.com/c/dogs-vs-cats
https://www.kaggle.com/c/dogs-vs-cats
http://docs.opencv.org/2.4/doc/tutorials/introduction/table_of_content_introduction/table_of_content_introduction.html#table-of-content-introduction
http://www.boost.org/
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/download/test1.zip


http://bit.ly/2Kg7nmX 

 

2 
 

used to check the performance of our neural network (how good it is at generalizing 

unseen examples). Unhappily, the provided test set by Kaggle is not labeled, so we will 

split the training set (in the provided link) and use a part of it as our test set. 

READING TRAINING SAMPLES 

Let’s start coding! First, let’s start by reading the list of files within the training set 

directory: 

 

#include <vector> 
#include <algorithm> 
#include <functional> 
#include <map> 
#include <set> 
#include <fstream> 
 
#include <opencv2/core/core.hpp> 
#include <opencv2/highgui/highgui.hpp> 
#include <opencv2/features2d/features2d.hpp> 
#include <opencv2/ml/ml.hpp> 
 
#include <boost/filesystem.hpp> 
 
namespace fs = boost::filesystem; 
 
/** 
* Get all files in directory (not recursive) 
* @param directory Directory where the files are contained 
* @return A list containing the file name of all files inside given directory 
**/ 
std::vector<std::string> getFilesInDirectory(const std::string& directory) 
{ 
 std::vector<std::string> files; 
 fs::path root(directory); 
 fs::directory_iterator it_end; 
 for (fs::directory_iterator it(root); it != it_end; ++it) 
 { 
  if (fs::is_regular_file(it->path())) 
  { 
   files.push_back(it->path().string()); 
  } 
 } 
 return files; 
} 
 
 
int main(int argc, char** argv) 
{ 
 if (argc != 4) 
 { 

std::cerr << "Usage: <IMAGES_DIRECTORY>  <NETWORK_INPUT_LAYER_SIZE> 
<TRAIN_SPLIT_RATIO>" << std::endl; 
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  exit(-1); 
 } 
 std::string imagesDir = argv[1]; 
 int networkInputSize = atoi(argv[2]); 
 float trainSplitSize = atof(argv[3]); 
 
 std::cout << "Reading training set..." << std::endl; 
 double start = (double)cv::getTickCount(); 
 std::vector<std::string> files = getFilesInDirectory(imagesDir); 
 std::random_shuffle(files.begin(), files.end()); 

} 

The function getFilesInDirectory expects as input a directory and returns a list of 

filenames within this directory. In our main, we expect to receive three parameters from 

command line: The directory where our training set is stored, the size of our network 

input layer and the ratio of our training set (i.e., 0.75 indicates that 75% of the images 

within the training set will be used to train our neural network while the remaining 25% 

will be used to test it). We then shuffle the list of filenames (in order to prevent bias). 

Pretty straight-forward until here, aye? :) 

Now we are going to iterate over each filename inside files and read the image 

associated to it. Since we will do it twice (one during the training step and another 

during the test step), let’s create a function apart in order to modularize our code. 

 

typedef std::vector<std::string>::const_iterator vec_iter; 
 
/** 
* Read images from a list of file names and returns, for each read image, 
* its class name and its local descriptors 
*/ 
void readImages(vec_iter begin, vec_iter end, std::function<void(const std::string&, 
const cv::Mat&)> callback) 
{ 
 for (auto it = begin; it != end; ++it) 
 { 
  std::string filename = *it; 
  std::cout << "Reading image " << filename << "..." << std::endl; 
  cv::Mat img = cv::imread(filename, 0); 
  if (img.empty()) 
  { 
   std::cerr << "WARNING: Could not read image." << std::endl; 
   continue; 
  } 
  std::string classname = getClassName(filename); 
  cv::Mat descriptors = getDescriptors(img); 
  callback(classname, descriptors); 
 } 
} 
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There it is. The readImages function expect to receive as input two vector iterators (one 

for the start of our vector and another for the end, indicating the range from which we 

will iterate over). Finally, it expects another third parameter, a lambda function called 

“callback” (lambda functions are only available on C++11, so enable it on compiler by 

adding the -std=c++11 flag or -std=c++0x on old compilers). Now let’s look more 

carefuly on what’s happening inside this function. 

We use a for to iterate over each filename between the limiters begin and end. For 

each filename, we read its associated image through the OpenCV imread function. The 

second parameter passed to imread indicates the color space (0 = gray scale. We don’t 

need the color information in this example. You’ll find the explanation later). After 

calling imread, we check if we could really read the image (through the empty method). If 

don’t, we skip to the next filename. Otherwise, we get the class name and the 

descriptors associated to the read image and return them to the “callback” function. 

Now let’s implement the getClassName and getDescriptors functions. 

If you look at the files inside the training set you extracted, you will find out that they are 

named as “dog.XXXXX.jpg” or “cat.XXXXX.jpg”. The first three letters is always the 

class name, where the remaining is only an identifier. So let’s get those three first 

letters! 

 

/** 
* Extract the class name from a file name 
*/ 
inline std::string getClassName(const std::string& filename) 
{ 
 return filename.substr(filename.find_last_of('/') + 1, 3); 
} 

 
 

Now what should the getDescriptors function looks like? Let’s figure out on the next 

topic. 
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EXTRACTING FEATURES 

There are several approaches here. We could use the color histogram, or perhaps 

the histogram of oriented gradients, etc., … However, I’m going through a different 

approach. I’m going to use the KAZE algorithm to extract local features from the image. 

Since we can’t submit local features to a neural network (because the number of 

descriptors varies), I’m also going to use the Bag of words strategy in order to address 

this problem, turning all set of descriptors into a single histogram of visual words, and 

THAT will be used as input to our neural network. Got it? Excellent! So let’s implement 

the getDescriptors to extract the KAZE features from an image, and later, after all KAZE 

features had been extracted, we’ll apply the Bag of Words technique. 

 

/** 
* Extract local features for an image 
*/ 
cv::Mat getDescriptors(const cv::Mat& img) 
{ 
 cv::Ptr<cv::KAZE> kaze = cv::KAZE::create(); 
 std::vector<cv::KeyPoint> keypoints; 
 cv::Mat descriptors; 
 kaze->detectAndCompute(img, cv::noArray(), keypoints, descriptors); 
 return descriptors; 
} 

 

Ok, now let’s go back to our main: 

 

struct ImageData 
{ 
 std::string classname; 
 cv::Mat bowFeatures; 
}; 
 
int main(int argc, char** argv) 
{ 
 if (argc != 4) 
 { 
  std::cerr << "Usage: <IMAGES_DIRECTORY>  <NETWORK_INPUT_LAYER_SIZE> 
<TRAIN_SPLIT_RATIO>" << std::endl; 
  exit(-1); 
 } 
 std::string imagesDir = argv[1]; 
 int networkInputSize = atoi(argv[2]); 
 float trainSplitRatio = atof(argv[3]); 

https://en.wikipedia.org/wiki/Color_histogram
https://en.wikipedia.org/wiki/Histogram_of_oriented_gradients
http://isit.u-clermont1.fr/~ab/Publications/Alcantarilla_Bartoli_Davison_ECCV12.pdf
https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision
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 std::cout << "Reading training set..." << std::endl; 
 double start = (double)cv::getTickCount(); 
 std::vector<std::string> files = getFilesInDirectory(imagesDir); 
 std::random_shuffle(files.begin(), files.end()); 
 
 cv::Mat descriptorsSet; 
 std::vector<ImageData*> descriptorsMetadata; 
 std::set<std::string> classes; 
 readImages(files.begin(), files.begin() + (size_t)(files.size() * 
trainSplitRatio), 
  [&](const std::string& classname, const cv::Mat& descriptors) { 
  // Append to the set of classes 
  classes.insert(classname); 
  // Append to the list of descriptors 
  descriptorsSet.push_back(descriptors); 
  // Append metadata to each extracted feature 
  ImageData* data = new ImageData; 
  data->classname = classname; 
  data->bowFeatures = cv::Mat::zeros(cv::Size(networkInputSize, 1), CV_32F); 
  for (int j = 0; j < descriptors.rows; j++) 
  { 
   descriptorsMetadata.push_back(data); 
  } 
 }); 
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) / 
cv::getTickFrequency() / 60.0 << std::endl; 
} 

 

I created a struct named ImageData, with two fields: classname and bowFeatures. Before 

calling the readImages function, I instanciated three variables: descriptorsSet (the set 

of descriptors of all read images), descriptorsMetadata (a vector of the struct we 

previously created. It’s being filled in such way that it has the same number of elements 

as the number of rows of descriptorsSet. That way, the i-th row of descriptorsSet can 

also be used to access its metadata (the class name, for instance)). And, for last, 

the classes variables (a set containing all found classes). 
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TRAINING THE BAG OF WORDS 

Now that we have the whole set of descriptors stored in the descriptorsSet variable, 

we can apply the Bag of words strategy. The Bag of Words algorithm is really simple: 

First we use a clustering algorithm (such as k-means) to obtain k centroids. Each 

centroid representates a visual word (the set of visual words is often 

called vocabulary). For each image, we create a histogram of size M, where M is the 

number of visual words. Now, for each extracted descriptor from the image, we 

measure its distance to all visual words, obtaining the index of the nearest one. We use 

that index to increment the position of histogram corresponding to that index, obtaining, 

that way, a histogram of visual words, that can later be submitted to our neural 

network. 

 
Source: http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html 

https://en.wikipedia.org/wiki/K-means_clustering
http://www.ifp.illinois.edu/~yuhuang/sceneclassification.html
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int main() 
{ 
 ... 
 
  std::cout << "Creating vocabulary..." << std::endl; 
 start = (double)cv::getTickCount(); 
 cv::Mat labels; 
 cv::Mat vocabulary; 
 // Use k-means to find k centroids (the words of our vocabulary) 
 cv::kmeans(descriptorsSet, networkInputSize, labels, 
cv::TermCriteria(cv::TermCriteria::EPS + 
  cv::TermCriteria::MAX_ITER, 10, 0.01), 1, cv::KMEANS_PP_CENTERS, 
vocabulary); 
 // No need to keep it on memory anymore 
 descriptorsSet.release(); 
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) / 
cv::getTickFrequency() / 60.0 << std::endl; 
 
 // Convert a set of local features for each image in a single descriptors 
 // using the bag of words technique 
 std::cout << "Getting histograms of visual words..." << std::endl; 
 int* ptrLabels = (int*)(labels.data); 
 int size = labels.rows * labels.cols; 
 for (int i = 0; i < size; i++) 
 { 
  int label = *ptrLabels++; 
  ImageData* data = descriptorsMetadata[i]; 
  data->bowFeatures.at<float>(label)++; 
 } 
} 

 

 
We use OpenCV k-means function to obtain k centroids (where k is the size of our 

network input layer, since the size of our histogram must be compatible with it), stored 

in the vocabulary variable. We also pass an additional parameter, labels, indicating the 

index of the nearest cluster for each descriptor, so we don’t need to computer it twice. 

Now, iterating over each element of labels, we fill our histograms, the bowFeatures field 

of our ImageData struct. The strategy of filling the descriptorsMetadata to make its 

number of elements as the number of rows of descriptorsSet seemed to be very 

convenient here, as we can directly access the histogram associated to each descriptor. 
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TRAINING THE NEURAL NETWORK 

Now that we have the histogram of visual words for each image, we can finally supply 

them to our neural network. But, before that, we need to tell to our neural network the 

expected output for each image. The reason for that is simple: A neural network, or 

more precisely, the variation of neural network that we are interested in using, 

called Multilayer perceptron, is a supervised learning algorithm. A supervised 

learning algorithm is one that tries to estimate a function H(x) (called hypothesis 

function) that correctly maps inputs to outputs (for instance, we are considering as 

input the images and as output the class associated to each image - cat or dog). 

So we need to supply the class name associated to each image (or, more precisely, to 

each histogram of visual words) in order to enable it to “learn” the pattern. However, a 

neural network doesn’t understand categorical data. It works by showing numbers in the 

input layer and numbers in the output layer, and then it will try to adjust its weights in 

order that a function (called activation function) applied to the input numbers results in 

the output numbers. This process is shown in the image below. 

 

Since the activation function generally outputs values between 0 and 1, it’s usual to 

encode the classes as a sequence of zeros where only one bit is set to one. This bit is 

different for each class. For example, consider the example of number of classes = 4. 

We would then have four codifications: 

Class A = 1000 

Class B = 0100 

Class C = 0010 

Class D = 0001 

https://en.wikipedia.org/wiki/Multilayer_perceptron
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As we only have two classes, our codification will be: 

Cat = 10 

Dog = 01 

 

int main() 
{ 
 ... 
  // Filling matrixes to be used by the neural network 
  std::cout << "Preparing neural network..." << std::endl; 
 cv::Mat trainSamples; 
 cv::Mat trainResponses; 
 std::set<ImageData*> uniqueMetadata(descriptorsMetadata.begin(), 
descriptorsMetadata.end()); 
 for (auto it = uniqueMetadata.begin(); it != uniqueMetadata.end(); ) 
 { 
  ImageData* data = *it; 
  cv::Mat normalizedHist; 
  cv::normalize(data->bowFeatures, normalizedHist, 0, data->bowFeatures.rows, 
cv::NORM_MINMAX, -1, cv::Mat()); 
  trainSamples.push_back(normalizedHist); 
  trainResponses.push_back(getClassCode(classes, data->classname)); 
  delete *it; // clear memory 
  it++; 
 } 
 descriptorsMetadata.clear(); 
} 

 
 

Notice the use of the getClassCode. It’s a function that turns a class name into its binary 

codification. Also, pay attention to the cv::normalize function. We normalize the 

histogram of visual words in order to remove the bias of number of descriptors.\ 

 

/** 
* Transform a class name into an id 
*/ 
int getClassId(const std::set<std::string>& classes, const std::string& classname) 
{ 
 int index = 0; 
 for (auto it = classes.begin(); it != classes.end(); ++it) 
 { 
  if (*it == classname) break; 
  ++index; 
 } 
 return index; 
} 
 
/** 
* Get a binary code associated to a class 
*/ 
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cv::Mat getClassCode(const std::set<std::string>& classes, const std::string& classname) 
{ 
 cv::Mat code = cv::Mat::zeros(cv::Size((int)classes.size(), 1), CV_32F); 
 int index = getClassId(classes, classname); 
 code.at<float>(index) = 1; 
 return code; 
} 

 
 

And now we have the inputs and outputs for our neural network! We are finally able to 

train it! 

 

/** 
* Get a trained neural network according to some inputs and outputs 
*/ 
cv::Ptr<cv::ml::ANN_MLP> getTrainedNeuralNetwork(const cv::Mat& trainSamples, const 
cv::Mat& trainResponses) 
{ 
 int networkInputSize = trainSamples.cols; 
 int networkOutputSize = trainResponses.cols; 
 cv::Ptr<cv::ml::ANN_MLP> mlp = cv::ml::ANN_MLP::create(); 
 std::vector<int> layerSizes = { networkInputSize, networkInputSize / 2, 
  networkOutputSize }; 
 mlp->setLayerSizes(layerSizes); 
 mlp->setActivationFunction(cv::ml::ANN_MLP::SIGMOID_SYM); 
 mlp->train(trainSamples, cv::ml::ROW_SAMPLE, trainResponses); 
 return mlp; 
} 
 
int main() 
{ 
 ... 
  // Training neural network 
  std::cout << "Training neural network..." << std::endl; 
 start = cv::getTickCount(); 
 cv::Ptr<cv::ml::ANN_MLP> mlp = getTrainedNeuralNetwork(networkInputSize, 
  trainSamples, trainResponses); 
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) / 
cv::getTickFrequency() / 60.0 << std::endl; 
 
 // We can clear memory now  
 trainSamples.release(); 
 trainResponses.release(); 
} 
 

 
 

The getTrainedNeuralNetwork function expects to receive as input the size of training 

samples and training outputs. Inside the function, I first set two 

variables: networkInputSize, that is the number of columns (features) of our training 

samples and networkOutputSize, that is the number of columns of our training outputs. I 
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then set layerSizes, that defines the number of layers and number of nodes for each 

layer of our network. For instance, I’m creating a network that only have one 

hidden layer (with size networkInputSize / 2), since I think it’ll be enough for 

our task. If you want improved accuracy, we can increase it, at cost of 

performance. 

EVALUATING OUR NETWORK 

And now the training step is DONE! Let’s use our trained neural network to evaluate our 

test samples and measure how good it is. First, let’s train a FLANN model from the 

vocabulary, so we can calculate the histogram of visual words for each test sample 

much faster: 

 

 

int main() 
{ 
 ... 
 
  // Train FLANN  
  std::cout << "Training FLANN..." << std::endl; 
 start = cv::getTickCount(); 
 cv::FlannBasedMatcher flann; 
 flann.add(vocabulary); 
 flann.train(); 
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) / 
 cv::getTickFrequency() / 60.0 << std::endl; 
} 

 

Now let’s read the test samples: 

 

int main() 
{ 
 ... 
  // Reading test set  
  std::cout << "Reading test set..." << std::endl; 
 start = cv::getTickCount(); 
 cv::Mat testSamples; 
 std::vector<int> testOutputExpected; 
 readImages(files.begin() + (size_t)(files.size() * trainSplitRatio), files.end(), 
  [&](const std::string& classname, const cv::Mat& descriptors) { 
  // Get histogram of visual words using bag of words technique 
  cv::Mat bowFeatures = getBOWFeatures(flann, descriptors, networkInputSize); 
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  cv::normalize(bowFeatures, bowFeatures, 0, bowFeatures.rows, 
cv::NORM_MINMAX, -1, cv::Mat()); 
  testSamples.push_back(bowFeatures); 
  testOutputExpected.push_back(getClassId(classes, classname)); 
 }); 
 std::cout << "Time elapsed in minutes: " << ((double)cv::getTickCount() - start) / 
cv::getTickFrequency() / 60.0 << std::endl; 
} 

 

 
We instanciated two variables: testSamples (set of histogram of visual words for each 

test samples) and testOutputExpected (the output expected for each test sample. We 

are using a number that correspond to the id of the class, obtained through 

the getClassId previously defined). We then get the Bag of Words features through 

the getBOWFeatures function and normalize it. What we still didn’t define is 

the getBOWFeatures function, that turns a set of local KAZE features into a histogram of 

visual words. Let’s do it 

 

 

* Turn local features into a single bag of words histogram of 
* of visual words (a.k.a., bag of words features) 
*/ 
cv::Mat getBOWFeatures(cv::FlannBasedMatcher& flann, const cv::Mat& descriptors, 
 int vocabularySize) 
{ 
 cv::Mat outputArray = cv::Mat::zeros(cv::Size(vocabularySize, 1), CV_32F); 
 std::vector<cv::DMatch> matches; 
 flann.match(descriptors, matches); 
 for (size_t j = 0; j < matches.size(); j++) 
 { 
  int visualWord = matches[j].trainIdx; 
  outputArray.at<float>(visualWord)++; 
 } 
 return outputArray; 
} 

 

 
It uses the FLANN match method to calculate the nearest visual word for each 

descriptor. It then fill a histogram with the number of occurrences for each visual word. 

Pretty simple, right? 

Now that we have the inputs and outputs for the test samples, let’s calculate 

a confusion matrix. 

 

/** 

https://en.wikipedia.org/wiki/Confusion_matrix
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* Receives a column matrix contained the probabilities associated to 
* each class and returns the id of column which contains the highest 
* probability 
*/ 
int getPredictedClass(const cv::Mat& predictions) 
{ 
 float maxPrediction = predictions.at<float>(0); 
 float maxPredictionIndex = 0; 
 const float* ptrPredictions = predictions.ptr<float>(0); 
 for (int i = 0; i < predictions.cols; i++) 
 { 
  float prediction = *ptrPredictions++; 
  if (prediction > maxPrediction) 
  { 
   maxPrediction = prediction; 
   maxPredictionIndex = i; 
  } 
 } 
 return maxPredictionIndex; 
} 
 
/** 
* Get a confusion matrix from a set of test samples and their expected 
* outputs 
*/ 
std::vector<std::vector<int> > getConfusionMatrix(cv::Ptr<cv::ml::ANN_MLP> mlp, 
 const cv::Mat& testSamples, const std::vector<int>& testOutputExpected) 
{ 
 cv::Mat testOutput; 
 mlp->predict(testSamples, testOutput); 
 std::vector<std::vector<int> > confusionMatrix(2, std::vector<int>(2)); 
 for (int i = 0; i < testOutput.rows; i++) 
 { 
  int predictedClass = getPredictedClass(testOutput.row(i)); 
  int expectedClass = testOutputExpected.at(i); 
  confusionMatrix[expectedClass][predictedClass]++; 
 } 
 return confusionMatrix; 
} 
 
/** 
* Print a confusion matrix on screen 
*/ 
void printConfusionMatrix(const std::vector<std::vector<int> >& confusionMatrix, 
 const std::set<std::string>& classes) 
{ 
 for (auto it = classes.begin(); it != classes.end(); ++it) 
 { 
  std::cout << *it << " "; 
 } 
 std::cout << std::endl; 
 for (size_t i = 0; i < confusionMatrix.size(); i++) 
 { 
  for (size_t j = 0; j < confusionMatrix[i].size(); j++) 
  { 
   std::cout << confusionMatrix[i][j] << " "; 
  } 
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  std::cout << std::endl; 
 } 
} 
 
/** 
* Get the accuracy for a model (i.e., percentage of correctly predicted 
* test samples) 
*/ 
float getAccuracy(const std::vector<std::vector<int> >& confusionMatrix) 
{ 
 int hits = 0; 
 int total = 0; 
 for (size_t i = 0; i < confusionMatrix.size(); i++) 
 { 
  for (size_t j = 0; j < confusionMatrix.at(i).size(); j++) 
  { 
   if (i == j) hits += confusionMatrix.at(i).at(j); 
   total += confusionMatrix.at(i).at(j); 
  } 
 } 
 return hits / (float)total; 
} 
 
 
int main() 
{ 
 ... 
  // Get confusion matrix of the test set 
  std::vector<std::vector<int> > confusionMatrix = getConfusionMatrix(mlp, 
   testSamples, testOutputExpected); 
 
 // Get accuracy of our model 
 std::cout << "Confusion matrix: " << std::endl; 
 printConfusionMatrix(confusionMatrix, classes); 
 std::cout << "Accuracy: " << getAccuracy(confusionMatrix) << std::endl; 
} 
 

 
 

OK, a lot happened here. Let’s check it step by step. First, in the getConfusionMatrix, I 

use the MLP predictmethod to predict the class for each test sample. It returns a matrix 

with the same number of columns as our number of classes, where on each column lies 

a “probability” of the sample belong to class corresponding to that column. We use than 

a function called getPredictedClass, which is called over each row of the output 

of predict method and return the column index with highest “probability”. Now that we 

have the predicted and expected classes, we can construct our confusion matrix by 

simplying incrementing the index composed by the tuple (expected, predicted). 

In possess of the confusion matrix, we can easily calculate the accuracy, that is the 

ratio of correctly predicted samples, by simplying summing the diagonal of our 

confusion matrix (number of correct predictions) and diving by the sum of our cells of 

our confusion matrix (number of test samples). 
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SAVING MODELS 

Finally, let’s save our models, so we can use it later on a production environment: 

 

/** 
* Save our obtained models (neural network, bag of words vocabulary 
* and class names) to use it later 
*/ 
void saveModels(cv::Ptr<cv::ml::ANN_MLP> mlp, const cv::Mat& vocabulary, 
 const std::set<std::string>& classes) 
{ 
 mlp->save("mlp.yaml"); 
 cv::FileStorage fs("vocabulary.yaml", cv::FileStorage::WRITE); 
 fs << "vocabulary" << vocabulary; 
 fs.release(); 
 std::ofstream classesOutput("classes.txt"); 
 for (auto it = classes.begin(); it != classes.end(); ++it) 
 { 
  classesOutput << getClassId(classes, *it) << "\t" << *it << std::endl; 
 } 
 classesOutput.close(); 
} 
 
int main() 
{ 
 ... 
 
  // Save models 
  std::cout << "Saving models..." << std::endl; 
 saveModels(mlp, vocabulary, classes); 
 
 return 0; 
} 
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The MLP object that its own saving function called save (it also has a load method that 

can later be used to load a trained neural network from a file). We save the vocabulary 

(since we need it in order to convert the local features into a histogram of visual words) 

into a file named “vocabulary.yaml”. And, finally, we also save the class names 

associated to each id (so we can map the output of neural network to a name). That’s it! 

The full code can be found below. 

 

Compile it by calling: 

1 

g++ opencv_ann.cpp -std=c++0x  -I/usr/local/include/opencv -I/usr/local/include/boost -

I/usr/local/include -L/usr/local/lib -lopencv_shape -lopencv_stitching -lopencv_objdetect -

lopencv_superres -lopencv_videostab -lopencv_calib3d -lopencv_features2d -

lopencv_highgui -lopencv_videoio -lopencv_imgcodecs -lopencv_video -lopencv_photo -

lopencv_ml -lopencv_imgproc -lopencv_flann -lopencv_core -lopencv_hal -

lboost_filesystem -lboost_system -o mlp 

 

For instance, here’s the result I got from the Kaggle’s training set (using 

networkInputSize = 512, trainSplitRatio = 0.7) 

 

Confusion matrix: 

cat dog 

2669 1097 

1053 2681 

Accuracy: 0.713333 

Not bad! Not bad at all, considering the difficulty of some images! ;) 

 

Source: https://picoledelimao.github.io/blog/2016/01/31/is-it-a-cat-or-dog-a-neural-

network-application-in-opencv/ 

https://picoledelimao.github.io/blog/2016/01/31/is-it-a-cat-or-dog-a-neural-network-application-in-opencv/
https://picoledelimao.github.io/blog/2016/01/31/is-it-a-cat-or-dog-a-neural-network-application-in-opencv/

